设函数,求并求的值
如图所示,设抛物线的焦点为,且其准线与轴交于,以,为焦点,离心率的椭圆与抛物线在轴上方的一个交点为P.(1)当时,求椭圆的方程;(2)是否存在实数,使得的三条边的边长是连续的自然数?若存在,求出这样的实数;若不存在,请说明理由.
已知向量向量与向量的夹角为,且.(1)求向量 ; (2)若向量与共线,向量,其中、为的内角,且、、依次成等差数列,求的取值范围.
如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B = 900,D为棱BB1上一点,且面DA1 C⊥面AA1C1C.求证:D为棱BB1中点;(2)为何值时,二面角A -A1D - C的平面角为600.
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:. (I)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;(II)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.
已知定圆的圆心为,动圆过点,且和圆相切,动圆的圆心的轨迹记为.(Ⅰ)求曲线的方程;(Ⅱ)若点为曲线上一点,试探究直线:与曲线是否存在交点? 若存在,求出交点坐标;若不存在,请说明理由.