.(本小题满分14分)已知。(1)证明:(2)分别求,;(3)试根据(1)(2)的结果归纳猜想一般性结论,并证明你的结论.
某地区因干旱缺水,政府向市民宣传节约用水,并进行广泛动员 三个月后,统计部门在一个小区随机抽取了户家庭,分别调查了他们在政府动员前后三个月的月平均用水量(单位:吨),将所得数据分组,画出频率分布直方图(如图所示)动员前 动员后(Ⅰ)已知该小区共有居民户,在政府进行节水动员前平均每月用水量是吨,请估计该小区在政府动员后比动员前平均每月节约用水多少吨;(Ⅱ)为了解动员前后市民的节水情况,媒体计划在上述家庭中,从政府动员前月均用水量在范围内的家庭中选出户作为采访对象,其中在内的抽到户,求的分布列和期望
在中,角所对的边分别为,已知,(Ⅰ)求的大小;(Ⅱ)若,求的取值范围.
已知函数的定义域为.(I)求函数在上的最小值;(Ⅱ)对,不等式恒成立,求的取值范围.
已知正项数列的前项和为,是与的等比中项.(1)求证:数列是等差数列;(2)若,且,求数列的通项公式;(3)在(2)的条件下,若,求数列的前项和.
在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线与交于两点.(1)写出的方程;(2) ,求的值.