.如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且.(1)求直线AC的解析式;(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且沿DE折叠后点O落在边AB上处?
求下列各式的值:(1) ; (2).
在平面直角坐标系中,点A的坐标为(-6, 6),以A为顶点的∠BAC的两边始终与x轴交于B、C两点(B在C左面),且∠BAC=45°.(1)如图,连接OA,当AB=AC时,试说明:OA=OB.(2)过点A作AD⊥x轴,垂足为D,当DC=2时,将∠BAC沿AC所在直线翻折,翻折后边AB交y轴于点M,求点M的坐标.
小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图像回答下列问题:(1)小聪在图书馆查阅资料的时间为 分钟,小聪返回学校的速度为 千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?
如图,平面直角坐标系中,过点C(28,28)分别作x轴、y轴的垂线,垂足分别为B、A,一次函数y=x+3的图像分别与x轴和CB交于点D、E,点P 是DE中点,连接AP.(1)求证:△ADO≌△AEC;(2)求AP的长.
如图,在Rt△ABC中,∠ACB=90º,AC=3cm,BC=4cm.动点P从点B出发,以每秒1cm的速度沿射线BA运动,求出点P运动所有的时间t,使得△PBC为等腰三角形.