求出下列各式中x的值.(每小题5分,共10分) (1)2 (2)
图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示(1)根据图2填表:
(2)变量y是x的函数吗?为什么?(3)根据图中的信息,请写出摩天轮的直径.
如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?(参考数据:sin35°0.57,cos35°0.82,tan35°0.70)
先化简,再求值:,其中
(本题12分)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为(米),与桌面的高度为(米),运行时间为(秒),经多次测试后,得到如下部分数据:
(1)当为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,与满足①用含的代数式表示;②球网高度为0.14米,球桌长(1.4×2)米,若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求的值.
如图,在矩形 A B C D 中, E 为 C D 的中点, F 为 B E 上的一点,连结 C F 并延长交 A B 于点 M , M N ⊥ C M 交射线 A D 于点N. (1)当F为BE中点时,求证:AM=CE; (2)若 A B B C = E F B F = 2 ,求 A N N D 的值; (3)若 A B B C = E F B F ,当 n 为何值时, M N ∥ B E ?