2007年5月30日,在“六一国际儿童节”来临之际,某初级中学开展了向山区“希望小学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题:(1)从图②中,我们可以看出人均捐赠图书最多的是_______年级;(2)估计九年级共捐赠图书多少册?(3)全校大约共捐赠图书多少册?
如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为. (1)请直接写出点的坐标; (2)求抛物线的解析式; (3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;
如图:等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心,顺次连接A、O1、B、O2. (1)求证:四边形AO1BO2是菱形; (2)过直径AC的端点C作⊙O1的切线CE交AB的延长线于E,连接CO2交AE于D,求证:CE=2DO2; (3)在(2)的条件下,若,求的值.
某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.求: (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率)
图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知斜屋面的倾斜角为,长度为2.1米的真空管AB与水平线AD的夹角为,安装热水器的铁架水平管BC长0.2米,求: (1)真空管上端B到AD的距离(结果精确到0.01米). (2)铁架垂直管CE的长度(结果精确到0.01米). (,)
如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P. (1)求证:AF=BE; (2)请你猜测∠BPF的度数,并证明你的结论。