(本题9分)设函数。(1)求的值;(2)求的最小值及取最小值时的集合;(3)求的单调递增区间。
一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋。(1)求该人在4次投掷中恰有三次投入红袋的概率;(2)求该人两次投掷后得分的数学期望。
已知数列中,且点在直线上。(Ⅰ)求数列的通项公式;(Ⅱ)若函数求函数的最小值;
已知二次函数对任意,都有成立,设向量(sinx,2),(2sinx,),(cos2x,1),(1,2),当[0,]时,求不等式f()>f()的解集.
.(本题满分14分)已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<.(1)若coscosφ-sinsinφ=0,求φ的值;(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.
(本题满分12分)设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,sin2x+m).(1)求函数f(x)的最小正周期和在[0,π]上的单调递增区间.(2)当x∈时,-4<f(x)<4恒成立,求实数m的取值范围.