请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.(本小题满分10分)选修4-1:几何证明选讲如图,是⊙O的一条切线,切点为,都是⊙O的割线,已知证明:(Ⅰ);(Ⅱ)
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小.
如图所示,在正三棱柱中,底面边长为,侧棱长为,是棱的中点.
(Ⅰ)求证:平面;
已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N(Ⅰ)求E的方程;(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.
若圆过点且与直线相切,设圆心的轨迹为曲线,、为曲线上的两点,点,且满足.(1)求曲线的方程;(2)若,直线的斜率为,过、两点的圆与抛物线在点处有共同的切线,求圆的方程;(3)分别过、作曲线的切线,两条切线交于点,若点恰好在直线上,求证:与均为定值.
过轴上动点引抛物线的两条切线、,、为切点.(1)若切线,的斜率分别为和,求证: 为定值,并求出定值;(2)求证:直线恒过定点,并求出定点坐标; (3)当最小时,求的值.