甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、…、的个黑球,从甲、乙两盒中各抽取一个小球,抽到标号为1号红球和号黑球的概率为.(Ⅰ)求的值;(Ⅱ)现从甲乙两盒各随机抽取1个小球,抽得红球的得分为其标号数;抽得黑球,若标号数为奇数,则得分为1,若标号数为偶数,则得分为0,设被抽取的2个小球得分之和为,求的数学期望.
(本小题满分12分) 同时掷两颗骰子,计算: (1)向上的点数之和是5的概率; (2)向上的点数中至少有一个5点或6点的概率.
(本小题满分12分) 已知函数是奇函数,并且函数的图像经过点. (1)求实数的值; (2)当时,求函数的值域.
(本小题满分12分) 已知圆C:的圆心为C,点,O为坐标原点. (1)求过点A和圆心的直线方程; (2)求过点A和原点O的直线被圆C所截得的弦长.
(本小题满分10分) 已知平面向量. (1)求向量的坐标; (2)当实数为何值时,与共线.
(本小题满分12分) 设函数在及时取得极值; (Ⅰ)求与b的值; (Ⅱ)若对于任意的,都有成立,求c的取值范围。