甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、…、的个黑球,从甲、乙两盒中各抽取一个小球,抽到标号为1号红球和号黑球的概率为.(Ⅰ)求的值;(Ⅱ)现从甲乙两盒各随机抽取1个小球,抽得红球的得分为其标号数;抽得黑球,若标号数为奇数,则得分为1,若标号数为偶数,则得分为0,设被抽取的2个小球得分之和为,求的数学期望.
已知圆心为的圆方程为,点是直线上的一动点,过点作圆的切线,切点为. (1)当切线的长度为时,求点的坐标; (2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由. (3)求线段长度的最小值.
如图,在△中,,,点在上,交于,交于.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面. (1)求证:平面. (2)设,当为何值时,二面角的大小为?
如图,四棱锥中,底面是平行四边形,平面,垂足为,在线段上,,,,是的中点,四面体的体积为. (1)求异面直线与所成角的余弦值; (2)棱上是否存在点,使,若存在,求的值,若不存在,请说明理由.
如图,的顶点,的平分线所在直线方程为,边上的高所在直线方程为. (1)求顶点的坐标; (2)求的面积.
设函数. (1)若曲线处的切线与直线垂直,求的值; (2)求函数的单增区间; (3)若函数有两个极值点,求证:.