(本小题满分12分)已知的二项展开式中第五项的系数与第三项的系数的比是10:1.(1)求二项展开式中各项系数的和;(2)求二项展开式中系数最大的项和二项式系数最大的项
已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.(1)求椭圆C的方程;(2)求·的取值范围;(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.(1)求椭圆的标准方程;(2)若P为线段AB的中点,求k1;(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.
椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,过F1作垂直于椭圆长轴的弦PQ,|PQ|为3.(1)求椭圆E的方程;(2)若过F1的直线l交椭圆于A,B两点,判断是否存在直线l使得∠AF2B为钝角,若存在,求出l的斜率k的取值范围.
如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B1作直线交椭圆于P、Q两点,使PB2⊥QB2,求△PB2Q的面积.
设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.