已知△ABC,分别以AC和BC为直径作半圆O1,O2,P是AB的中点,(1)如图1,若△ABC是等腰三角形,且AC=BC,在,上分别取点E、F,使∠AO1E=∠BO2F,则有结论①△PO1E≌△FO2P,②四边形PO1CO2是菱形,请给出结论②的证明;(2)如图2,若(1)中△ABC是任意三角形,其他条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;(3)如图3,若PC是⊙O1的切线,求证:AB2=BC2+3AC2.
已知圆锥的底面直径是8,母线长是16,求它的侧面展开图的圆心角与圆锥的全面积.
如图,已知每个小正方形的边长为1cm,O、A、B都在小正方形顶点上,扇形OAB是某个圆锥的侧面展开图.(1)计算这个圆锥侧面展开图的面积;(2)求这个圆锥的底面半径.
如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.(3)试判断⊙O中其余部分能否给(2)中的圆锥做两个底面.
如图,一只纺锤可近似看作由两个圆锥拼合而成,AB=18,AD=9,r=3.(1)求纺锤的表面积; (2)一只蚂蚁要从C点出发绕这只纺锤爬一圈回到原地,求蚂蚁爬过的最短路线长.
如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,都经过BC的中点D.则图中阴影部分面积是.