已知:如图,AB=CD,AB∥CD,FD∥EB求证:CE=AF
某校开展对学生“劳动习惯”情况的调查,为了解全校500名学生“主动做家务事”的情况,随机抽查了该校部分学生一周“主动做家务事”的次数,制成了如下的统计表和统计图.
次数
0
1
2
3
4
人数
6
13
12
(1)根据以上信息,求在被抽查学生中,一周“主动做家务事”3次的人数;
(2)若在被抽查学生中随机抽取1名,则抽到的学生一周“主动做家务事”不多于2次的概率是多少?
(3)根据样本数据,估计全校学生一周“主动做家务事”3次的人数.
如图,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) ,经过点 A ( − 1 , 0 ) , B ( 3 , 0 ) , C ( 0 , 3 ) 三点.
(1)求抛物线的解析式及顶点 M 的坐标;
(2)连接 AC 、 BC , N 为抛物线上的点且在第四象限,当 S ΔNBC = S ΔABC 时,求 N 点的坐标;
(3)在(2)问的条件下,过点 C 作直线 l / / x 轴,动点 P ( m , 3 ) 在直线 l 上,动点 Q ( m , 0 ) 在 x 轴上,连接 PM 、 PQ 、 NQ ,当 m 为何值时, PM + PQ + QN 最小,并求出 PM + PQ + QN 的最小值.
如图, CD 是 ⊙ O 的直径,点 B 在 ⊙ O 上,连接 BC 、 BD ,直线 AB 与 CD 的延长线相交于点 A , A B 2 = AD · AC , OE / / BD 交直线 AB 于点 E , OE 与 BC 相交于点 F .
(1)求证:直线 AE 是 ⊙ O 的切线;
(2)若 ⊙ O 的半径为3, cos A = 4 5 ,求 OF 的长.
如图,直线 y 1 = mx + n ( m ≠ 0 ) 与双曲线 y 2 = k x ( k ≠ 0 ) 相交于 A ( − 1 , 2 ) 和 B ( 2 , b ) 两点,与 y 轴交于点 C ,与 x 轴交于点 D .
(1)求 m , n 的值;
(2)在 y 轴上是否存在一点 P ,使 ΔBCP 与 ΔOCD 相似?若存在求出点 P 的坐标;若不存在,请说明理由.
关于三角函数有如下公式: sin ( α + β ) = sin α cos β + cos α sin β , sin ( α − β ) = sin α cos β − cos α sin β
cos ( α + β ) = cos α cos β − sin α sin β , cos ( α − β ) = cos α cos β + sin α sin β
tan ( α + β ) = tan α + tan β 1 − tan α tan β ( 1 − tan α tan β ≠ 0 )
tan ( α − β ) = tan α − tan β 1 + tan α tan β ( 1 + tan α tan β ≠ 0 )
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
如: tan 105 ° = tan ( 45 ° + 60 ° ) = tan 45 ° + tan 60 ° 1 − tan 45 ° tan 60 ° = 1 + 3 1 − 3 = − 2 − 3
根据上面的知识,你可以选择适当的公式解决下面问题:
如图,两座建筑物 AB 和 DC 的水平距离 BC 为24米,从点 A 测得点 D 的俯角 α = 15 ° ,测得点 C 的俯角 β = 75 ° ,求建筑物 CD 的高度.