关于三角函数有如下公式: sin ( α + β ) = sin α cos β + cos α sin β , sin ( α − β ) = sin α cos β − cos α sin β
cos ( α + β ) = cos α cos β − sin α sin β , cos ( α − β ) = cos α cos β + sin α sin β
tan ( α + β ) = tan α + tan β 1 − tan α tan β ( 1 − tan α tan β ≠ 0 )
tan ( α − β ) = tan α − tan β 1 + tan α tan β ( 1 + tan α tan β ≠ 0 )
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
如: tan 105 ° = tan ( 45 ° + 60 ° ) = tan 45 ° + tan 60 ° 1 − tan 45 ° tan 60 ° = 1 + 3 1 − 3 = − 2 − 3
根据上面的知识,你可以选择适当的公式解决下面问题:
如图,两座建筑物 AB 和 DC 的水平距离 BC 为24米,从点 A 测得点 D 的俯角 α = 15 ° ,测得点 C 的俯角 β = 75 ° ,求建筑物 CD 的高度.
为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为,矩形区域的面积为.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?
如图,在等腰三角形中,,是边上一点,以为一边,向上作等腰,使∽,连, 求证:(1) (2)
如图,一次函数与反比例函数的图象交于、两点.(1)求、两点的坐标和反比例函数的解析式;(2)根据图象,直接写出当时的取值范围;(3)求的面积.
已知函数(为常数).(1)证明:无论m取何值,该函数与轴总有两个交点;(2)设函数的两交点的横坐标分别为和,且,求此函数的解析式.