(11·兵团维吾尔)如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AB的长;(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.
已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2).(1)求这两个函数的关系式;(2)观察图象,写出使得y1<y2成立的自变量x的取值范围;(3)在x轴的正半轴上存在一点P,且△ABP的面积是6,请直接写出点P的坐标.
某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.
已知a2-2a-2=0,求代数式(1-)÷的值.
解方程:x2-4x+2=0.
已知:如图,在△ABC中,AB=AC,D为BC上的一点,DA平分∠EDC,且∠E=∠B.求证:△ADE≌△ADC.