已知等差数列满足前2项的和为5,前6项的和为3.(1)求数列的通项公式;(2)设,求数列的前项和
(本小题满分10分)求下列各式的极限值:(Ⅰ); (Ⅱ).
(本小题满分14分) 已知函数的两条切线PM、PN,切点分别为M、N. (I)当时,求函数的单调递增区间; (II)设|MN|=,试求函数的表达式; (III)在(II)的条件下,若对任意的正整数,在区间内,总存在m+1个数使得不等式成立,求m的最大值.
(本小题满分14分)在数列中,(1)求的值;(2)证明:数列是等比数列,并求的通项公式;(3)求数列。
(本小题满分14分)已知圆:和圆,直线与圆相切于点;圆的圆心在射线上,圆过原点,且被直线截得的弦长为.(Ⅰ)求直线的方程;(Ⅱ)求圆的方程.
(本小题满分14分)如图,已知正三棱柱的底面边长是,是侧棱的中点,直线与侧面所成的角为.(1)求此正三棱柱的侧棱长;(2)求二面角的正切值;(3)求点到平面的距离.