某中学在一次法律知识测试中,抽取部分学生成绩(分数为整 数,满分100分)将所得得数据整理后,画出频率分布直方图,已 知图中从左到右的三个小组的频率分别为0.04,0.06,0.82,第二 小组的频数为3. (1)本次测试中抽样的学生有多少人? (2)分数在90.5~100.5这一组的频率是多少?有多少人? (3)若这次成绩在80分以上(含80分)为优秀,则优秀率不低于多少?
如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F. (1)求证:CF﹦BF; (2)若CD﹦6,AC﹦8,则⊙O的半径为,CE的长是.
如图所示,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.
正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点. (1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE; (2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请你说明理由; (3)如图②,若点E在上.写出线段DE、BE、AE之间的等量关系.(不必证明)
如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M. (1)填空:∠APC=度,∠BPC=度; (2)求证:△ACM≌△BCP; (3)若PA=1,PB=2,求梯形PBCM的面积.
如图,AB是⊙O的直径,=,∠COD=60°. (1)△AOC是等边三角形吗?请说明理由; (2)求证:OC∥BD.