如图,A、C两岛之间有一片暗礁,一艘小船于某日上午8时从A岛出发,以10海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B处.然后以同样的速度,沿北偏东15°方向直线航行,下午4时到达C岛.(Ⅰ)求A、C两岛之间的直线距离;(Ⅱ)求∠BAC的正弦值.
(本小题11分)已知椭圆过点,且长轴长等于4.(1)求椭圆C的方程;(2)是椭圆C的两个焦点,圆O是以为直径的圆,直线与圆O相切,并与椭圆C交于不同的两点A,B,若,求的值.
(本小题共11分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
(本小题11分)设命题实数满足,其中,命题实数满足.(Ⅰ)若,且为真,求实数的取值范围;(Ⅱ)若是的充分不必要条件,求实数的取值范围.
(本题满分14分,第1小题4分,第2小题5分,第3小题5分)平面直角坐标系中,为原点,射线与轴正半轴重合,射线是第一象限角平分线.在上有点列,,在上有点列,,.已知,,.(1)求点的坐标;(2)求的坐标;(3)求面积的最大值,并说明理由.
(本题满分10分,第1小题5分,第2小题5分)等比数列{an}的前n项的和为Sn,已知S1,S3,S2成等差数列.(1)求{an}的公比q;(2)若a1-a3=3,求.