已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R万元,且R(1)写出年利润关于年产量的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。(注:年利润=年销售收入-年总成本)
(1)已知两条直线:,:,问:当为何值时,与相交; (2)圆的方程为,求圆关于直线:对称的圆的方程.
已知圆C:,一动直线过A(-1,0)与圆C相交于P、Q两点,M是PQ的中点,与直线m:相交于N. (1)求证:当与m垂直时,必过圆心C; (2)当时,求直线的方程; (3)探索向量AM与向量AN,是否与直线的倾斜角有关,若无关,请求出其值;若有关,请说明理由。
如图,在三棱柱中,侧棱底面,为的中点,. (1)求证:平面; (2)若四棱锥的体积为, 求二面角的正切值.
如图,四棱锥中,,,侧面为等边三角形,. (Ⅰ)证明:; (Ⅱ)求与平面所成角的正弦值.
已知:以点C(t,) ()为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为坐标原点。 (1)求证:的面积为定值。 (2)设直线与圆C交于点M、N,若OM=ON,求圆C的方程。