已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R万元,且R(1)写出年利润关于年产量的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。(注:年利润=年销售收入-年总成本)
(本小题满分10分)选修4-5:不等式选讲: 已知函数. (Ⅰ)求不等式的解集; (Ⅱ)若关于的不等式恒成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程: 以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为(为参数,),曲线的极坐标方程为. (Ⅰ)求曲线的直角坐标方程; (Ⅱ)设直线与曲线相交于、两点,当变化时,求的最小值.
(本小题满分10分)选修4-1:几何证明选讲: 如图所示,已知与⊙相切,为切点,过点的割线交圆于两点,弦,相交于点,为上一点,且. (Ⅰ)求证:; (Ⅱ)若,求的长.
(本小题满分12分) 设函数 (1)当时,求函数的单调区间; (2)令<≤,其图像上任意一点P处切线的斜率≤恒成立,求实数的取值范围; (3)当时,方程在区间内有唯一实数解,求实数的取值范围。
(本小题满分12分)已知椭圆的右焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为,O为坐标原点. (Ⅰ)求椭圆C的方程 (Ⅱ)如图所示,设直线与圆、椭圆C同时相切,切点分别为A,B,求|AB|的最大值.