设数列的前n项和为,且,其中p是不为零的常数.(1)证明:数列是等比数列;(2)当p=3时,若数列满足,,求数列的通项公式.
设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足·=0. (1)求m的值; (2)求直线PQ的方程.
求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.
在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合如右图所示.将矩形折叠,使A点落在线段DC上. 若折痕所在直线的斜率为k,试写出折痕所在直线的方程.
已知△ABC的一个顶点A(-1,-4),∠B、∠C的平分线所在直线的方程分别为l1:y+1=0,l2:x+y+1=0,求边BC所在直线的方程.
已知A(4,-3),B(2,-1)和直线l:4x+3y-2=0,求一点P使|PA|=|PB|,且点P到l的距离等于2.