(本小题满分10分)选修4—4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线的极坐标方程为.(I)求曲线的直角坐标方程;(II)设直线与曲线相交于,两点,求M,N两点间的距离
定义:若数列满足,则称数列为“平方递推数列”。已知数列中,,点在函数的图像上,其中为正整数。 (1)证明:数列是“平方递推数列”,且数列为等比数列。 (2)设(1)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式。 (3)记,求数列的前项之和,并求使的的最小值。
在等比数列中,,公比,且,又与的等比中项为,,数列的前项和为。 (1)求数列的通项公式。 (2)求为何值时最大值?
已知函数 (1)写出函数的最小正周期和单调递增区间; (2)若且,求的值
已知数列是等差数列,是等比数列,且, ,(I)求数列的通项公式;(II)求数列的前10项和
如图,给出了一个三角形数阵,已知每一列的数成等差数列,从第3行起,每一行的数成等比数列,每一行的公比都相等.记第行第列的数为(∈N*). (1)试写出关于的表达式,并求; (2)设数阵中第n行的所有数之和为An,求An