(本小题满分12分)在锐角三角形ABC中,已知内角A、B、C所对的边分别为a、b、c,且且,(1)求A、B、C的大小;(2)若向量的值。
(本小题10分)设分别为椭圆的左、右两个焦点.(1)若椭圆上的点到两点的距离之和等于4,求椭圆的方程和焦点坐标;(2)设点是(1)中所得椭圆上的动点,,求的最大值.
(本小题10分)已知复数,若,(1)求;(2)求实数的值 .
(本小题满分11分)(理科做)如图1,在直角梯形中,,,,.把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.(1)求证:平面平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.(文科做)设函数.(1)求函数f(x)的单调区间和极值;(2)若对任意的不等式| f′(x)|≤a恒成立,求a的取值范围.
(本小题11分)已知椭圆过点,且长轴长等于4.(1)求椭圆C的方程;(2)是椭圆C的两个焦点,圆O是以为直径的圆,直线与圆O相切,并与椭圆C交于不同的两点A,B,若,求的值.
(本小题共11分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.