(本小题满分10分)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40, 50),[50, 60),…,[90, 100] 后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(I)求分数在 [70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ) 根据频率分布直方图估计这次高一年级期中考试的学生成绩的中位数(保留整数)。
(本小题14分) 已知函数的图像在[a,b]上连续不断,定义:,,其中表示函数在D上的最小值,表示函数在D上的最大值,若存在最小正整数k,使得对任意的成立,则称函数为上的“k阶收缩函数” (1)若,试写出,的表达式; (2)已知函数试判断是否为[-1,4]上的“k阶收缩函数”, 如果是,求出对应的k,如果不是,请说明理由; 已知,函数是[0,b]上的2阶收缩函数,求b的取值范围
(本小题满分12分) 已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=。 (1)求点S的坐标; (2)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点; ①判断直线MN的斜率是否为定值,并说明理由; ②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值。
(本小题满分12分)已知数列满足且,数列的前项和为。 (1)求数列的通项; (2)求; (3)设,求证:≥。
(本小题满分12分)如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD。 (1)求直线FD与平面ABCD所成的角; (2)求点D到平面BCF的距离; (3)求二面角B—FC—D的大小。
(本小题满分12分)在△ABC中,分别为角A,B,C所对的三边。 (1)若,求角A; (2)若BC=,A=,设B=,△ABC的面积为,求函数的关系式及其最值,并确定此时的值。