(本小题满分10分)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40, 50),[50, 60),…,[90, 100] 后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(I)求分数在 [70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ) 根据频率分布直方图估计这次高一年级期中考试的学生成绩的中位数(保留整数)。
在△ABC中,已知,,B=45°求A、C及c (结论保留最简根式形式)
(本小题满分14分)已知函数(x∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a的值所组成的集合A; (Ⅱ)设关于x的方程的两实数根为x1、x2,试问:是否存在实数m,使得不等式对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由?
(本小题满分14分)已知两点M(-1,0), N(1, 0), 且点P使成公差小于零的等差数列. (Ⅰ)求点P的轨迹方程; (Ⅱ)若点P的坐标为(x0, y0), 记θ为,的夹角, 求
(本小题满分13分)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇. (I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.
(本小题满分13分)若=,=,其中>0,记函数f(x)=(+)·+k. (1)若f(x)图象中相邻两条对称轴间的距离不小于,求的取值范围. (2)若f(x)的最小正周期为,且当x时,f(x)的最大值是,求f(x)的解析式,