.任意投掷两枚骰子,计算:(1)出现点数相同的概率;(2)出现点数和为奇数的概率、
某校从6名教师中,选派4名同时到3个边远地区支教,每个地区至少选派1名. (Ⅰ) 共有多少种不同的选派方法?(Ⅱ) 若6名教师中的甲,乙二位教师不能同时支教,共有多少种不同的选派方法?
设首项为a1,公差为d的等差数列{an}的前n项和为Sn.已知a7=-2,S5=30.(1) 求a1及d;(2) 若数列{bn}满足an= (n∈N*),求数列{bn}的通项公式.
已知函数 ((1)若函数在处有极值为,求的值;(2)若对任意,在上单调递增,求的最小值.
已知圆O:交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交直线于点Q.(1)求椭圆C的标准方程;(2)若点P的坐标为(1,1),求证:直线PQ圆O相切;(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知中,的对边分别为,且, (1)若,求边的大小;(2)求边上高的最大值.