解不等式2x﹣3<,并把解集在数轴上表示出来.
如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的长度是12.5米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角∠CAQ为45°,坡角∠BAQ为37°,求二楼的层高BC(精确到0.1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75 )
某校九年级所有学生参加2015年初中毕业生升学体育测试,为了解情况,从中抽取了部分学生的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)计算一共抽取了多少名学生的测试成绩并将条形统计图补充完整;(2)在扇形统计图中,等级C对应的圆心角的度数为多少度?(3)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有多少人?
先化简,再求值:,其中x满足x2+x-2=0.
计算或解方程:(1)|2-tan60°|-(π-3.14)0+(-)-2+(2).
如图所示,已知点C(-3,m),点D(m-3,0).直线CD交y轴于点A.作CE与X轴垂直,垂足为E,以点B(-1,0)为顶点的抛物线恰好经过点A、C. (1)则∠CDE= ; (2)求抛物线对应的函数关系式; (3)设P(x,y)为抛物线上一点(其中-3<x<1-或-1<x<1,连结BP并延长交直线CE于点N,记N点的纵坐标为yN,连结CP并延长交X轴于点M. ①试证明:EM•(EC+yN)为定值; ②试判断EM+EC+yN是否有最小值,并说明理由