在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.21世纪教育网(1)求AC所在直线的函数解析式;(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
如图,小明利用学到的数学知识测量大桥主架在水面以上的高度 AB ,在观测点 C 处测得大桥主架顶端 A 的仰角为 30 ° ,测得大桥主架与水面交汇点 B 的俯角为 14 ° ,观测点与大桥主架的水平距离 CM 为60米,且 AB 垂直于桥面.(点 A , B , C , M 在同一平面内)
(1)求大桥主架在桥面以上的高度 AM ;(结果保留根号)
(2)求大桥主架在水面以上的高度 AB .(结果精确到1米)
(参考数据 sin 14 ° ≈ 0 . 24 , cos 14 ° ≈ 0 . 97 , tan 14 ° ≈ 0 . 25 , 3 ≈ 1 . 73 )
某中学为了创设"书香校园",准备购买 A , B 两种书架,用于放置图书.在购买时发现, A 种书架的单价比 B 种书架的单价多20元,用600元购买 A 种书架的个数与用480元购买 B 种书架的个数相同.
(1)求 A , B 两种书架的单价各是多少元?
(2)学校准备购买 A , B 两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个 A 种书架?
某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.
根据图中提供的信息,解答下列问题:
(1)本次被调查的学生有 人;
(2)请补全条形统计图,并求出扇形统计图中"航模"所对应的圆心角的度数;
(3)通过了解,喜爱"航模"的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.
先化简,再求值: ( x - 1 - x 2 x + 1 ) ÷ x x 2 + 2 x + 1 ,其中 x = 3 .
在平面直角坐标系中,抛物线 y = a x 2 + bx - 3 过点 A ( - 3 , 0 ) , B ( 1 , 0 ) ,与 y 轴交于点 C ,顶点为点 D .
(1)求抛物线的解析式;
(2)点 P 为直线 CD 上的一个动点,连接 BC ;
①如图1,是否存在点 P ,使 ∠ PBC = ∠ BCO ?若存在,求出所有满足条件的点 P 的坐标;若不存在,请说明理由;
②如图2,点 P 在 x 轴上方,连接 PA 交抛物线于点 N , ∠ PAB = ∠ BCO ,点 M 在第三象限抛物线上,连接 MN ,当 ∠ ANM = 45 ° 时,请直接写出点 M 的坐标.