图10是小红设计的钻石形商标,△ABC是边长为2的等边三角形,四边形ACDE是等腰梯形,AC∥ED,∠EAC=60°,AE=1.(1)证明:△ABE≌△CBD;(2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比(不添加辅助线,不找全等的相似三角形);(3)小红发现AM=MN=NC,请证明此结论;(4)求线段BD的长.
如图,已知,以为直径,为圆心的半圆交于点,点为弧CF的中点,连接交于点,为△ABC的角平分线,且,垂足为点.求证:是半圆的切线;若,,求的长.
如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.求一次函数和反比例函数的表达式;在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE、CD的长度(结果精确到个位,).
)如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).请你用画树状图或列表格的方法求出|m+n|>1的概率;直接写出点(m,n)落在函数图象上的概率.
现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 如果折成图③的形状,猜想∠1、∠2′和∠A的数量关系,并说明理由.将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .