现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 如果折成图③的形状,猜想∠1、∠2′和∠A的数量关系,并说明理由.将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .
在△ABC中,∠B=∠A+20O,∠C=∠B+20O,求△ABC的三个内角的度数.
已知△ABC中,∠ABC=90゜,AB=BC,点A、B分别是x轴和y轴上的一动点.(1)如图1,若点C的横坐标为4,求点B的坐标;(2)如图2,BC交x轴于D,AD平分∠BAC,若点C的纵坐标为3,A(5,0),求点D的坐标.(3)如图3,分别以OB、AB为直角边在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y轴于M,求 S△BEM:S△ABO.
如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:_______________,并给予证明.
在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30º,求∠ACF度数.
已知:如图,点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:⑴△ABC≌△DEF;⑵BE=CF.