如图,飞机沿水平方向(A、B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行的距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个距离MN的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.
如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点F。 (1)求证:△ABF∽△ECF (2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长。
先化简,再求值:,其中a=-1,b=.
如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上. (1)证明四边形ABCD是菱形,并求点D的坐标; (2)求抛物线的对称轴和函数表达式; (3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.
如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4. (1)判断线段AP与PD的大小关系,并说明理由; (2)连接OD,当OD与半圆C相切时,求的长; (3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.
如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB. (1)求证:△BCP≌△DCP; (2)求证:∠DPE=∠ABC; (3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.