如图,飞机沿水平方向(A、B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行的距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个距离MN的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.
如图,已知点C、D在以O为圆心,AB为直径的半圆上,且于点M,CF⊥AB于点F交BD于点E,,(1)求⊙O的半径;(2)求证:CE = BE.
已知关于的方程有两个不相等的实数根, 求①的取值范围.②当k为最小整数时求原方程的解。
已知:如图在四边形ABCD中,AB=2,CD=1,∠A=60°,∠B=∠D=90°求四边形ABCD的面积
若二次函数图象的对称轴方程是x=1,并且图象经过A(0,-4),B(4,0),求此二次函数图象上点B关于对称轴x=1的对点的坐标;求此函数的解析式。
解方程: