如图,一次函数的图象与反比例函数y1=" –" ( x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值. (1) 求一次函数的解析式; (2) 设函数y2= (x>0)的图象与y1=" –" (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.
常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2). 这种分解因式的方法叫分组分解法.利用这种方法解决下列问题: (1)分解因式x2﹣2xy+y2﹣16; (2)△ABC三边a,b,c 满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.
已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E. (1)求证:AD=AE. (2)若BE∥AC,试判断△ABC的形状,并说明理由.
(8分)甲乙两班学生参加了植树造林,已知甲班每天比乙班多植5棵,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,求甲、乙班每天各植树多少棵?
8分)如图,在Rt△ABC中,∠C=90°,∠B=30° (1)作边AB的垂直平分线交AB于点D,交BC于点E(尺规作图,不写作法,保留作图痕迹). (2)连接AE,求证:AE=2DE.
先化简,再求值:,其中a=2,b=3.