(本小题满分14分)已知函数,,,其中且.(I)求函数的导函数的最小值;(II)当时,求函数的单调区间及极值;(III)若对任意的,函数满足,求实数的取值范围.
(本小题满分12分)已知. (1)当,时,若不等式恒成立,求的范围; (2)试证函数在内存在唯一零点.
(本小题满分12分)已知数列的前n项和(n为正整数)。 (1)令,求证数列是等差数列,并求数列的通项公式; (2)令,求数列的前项和。
(本小题满分12分)已知命题:抛物线与直线有两个不同交点;命题:函数在上单调递增;若或为真,且为假,求实数的取值范围。
(本小题满分10分)若极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合. 直线的参数方程是(为参数),曲线的极坐标方程为. (1)求曲线的直角坐标方程; (2)设直线与曲线相交于,两点,求M,N两点间的距离.
(本小题14分)已知点,的坐标分别为,.直线,相交于点,且它们的斜率之积是,记动点的轨迹为曲线. (1)求曲线的方程; (2)设是曲线上的动点,直线,分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围; (3)在(2)的条件下,记直线与的交点为,试探究点与曲线的位置关系,并说明理由.