(本小题满分12分)(1)对于定义在上的函数,满足,求证:函数在上是减函数;(2)请你认真研读(1)中命题并联系以下命题:若是定义在上的可导函数,满足,则是上的减函数。然后填空建立一个普遍化的命题:设是定义在上的可导函数,,若 +,则 是上的减函数。注:命题的普遍化就是从考虑一个对象过渡到考虑包含该对象的一个集合;或者从考虑一个较小的集合过渡到考虑包含该较小集合的更大集合。(3)证明(2)中建立的普遍化命题。
(本小题满分12分)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (I)求红队至少两名队员获胜的概率; (II)用表示红队队员获胜的总盘数,求的分布列和数学期望.
(本小题满分12分)如图,已知正三棱柱的各棱长都是4, 是的中点,动点在侧棱上,且不与点重合. (I)当时,求证:; (II)设二面角的大小为,求的最小值.
本小题满分10分)在中,角所对应的边分别为,,,求及.
在中,角满足关系:(Ⅰ)求角; (Ⅱ)若向量,,试求的最小值.
、函数(的一条对称轴为直线(Ⅰ)求(Ⅱ)用五点法画出函数在上的简图.