(本小题满分12分)(1)对于定义在上的函数,满足,求证:函数在上是减函数;(2)请你认真研读(1)中命题并联系以下命题:若是定义在上的可导函数,满足,则是上的减函数。然后填空建立一个普遍化的命题:设是定义在上的可导函数,,若 +,则 是上的减函数。注:命题的普遍化就是从考虑一个对象过渡到考虑包含该对象的一个集合;或者从考虑一个较小的集合过渡到考虑包含该较小集合的更大集合。(3)证明(2)中建立的普遍化命题。
已知函数. ①当时,求函数的最大值和最小值; ②求实数的取值范围,使在区间上是单调函数。
利用函数的单调性求函数的值域;
已知函数的定义域为,且同时满足下列条件:(1)是奇函数; (2)在定义域上单调递减;(3)求的取值范围。
判断一次函数反比例函数,二次函数的单调性。
(本小题满分14分) 设是定义在区间上的偶函数,命题:在上单调递减;命题:,若“或”为假,求实数的取值范围。