(本小题满分12分)(1)对于定义在上的函数,满足,求证:函数在上是减函数;(2)请你认真研读(1)中命题并联系以下命题:若是定义在上的可导函数,满足,则是上的减函数。然后填空建立一个普遍化的命题:设是定义在上的可导函数,,若 +,则 是上的减函数。注:命题的普遍化就是从考虑一个对象过渡到考虑包含该对象的一个集合;或者从考虑一个较小的集合过渡到考虑包含该较小集合的更大集合。(3)证明(2)中建立的普遍化命题。
设二次方程anx2-an+1x+1=0(n=1,2,3,…)有两根α、β,且满足6α-2αβ+6β=3.(1)试用an表示an+1;(2)求证:{an-}是等比数列;(3)当a1=时,求数列{an}的通项公式.
等差数列{an}的公差和等比数列{bn}的公比都是d(d≠1),且a1=b1,a4=b4,a10=b10.(1)求实数a1和d的值;(2)b16是不是{an}中的项?如果是,是第几项?如果不是,请说明理由.
是否存在一个等比数列{an},使其满足下列三个条件: (1)a1+a6=11且a3a4=;(2)an+1>an(n∈N*);(3)至少存在一个m(m∈N*,m>4),使am-1,,am+1+依次成等差数列.若存在,写出数列的通项公式;若不存在,请说明理由.
已知{an}是各项都为正数的等比数列,数列{bn}满足bn=[lga1+lga2+lga3+…+lg(kan)],问是否存在正数k,使得{bn}成等差数列?若存在,求出k的值;若不存在,请说明理由.
有纯酒精a L(a>1),从中取出1 L,再用水加满,然后再取出1 L,再用水加满,如此反复进行.问第九次和第十次共取出多少升纯酒精?