(本小题满分13分)已知圆C:过点A(3,1),且过点(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F.(1)求切线PF的方程; (2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程。(3)若Q为抛物线E上的一个动点,求的取值范围.
过点作直线与双曲线相交于两点、,且为线段的中点,求这条直线的方程.
已知椭圆的左右焦点坐标分别是,离心率,直线与椭圆交于不同的两点. (1)求椭圆的方程; (2)求弦的长度.
甲、乙两人参加普法知识竞赛,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人各抽一道(不重复). (1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙二人中至少有一人抽到选择题的概率是多少?
若双曲线与椭圆有相同的焦点,与双曲线有相同渐近线,求双曲线方程.
已知数列满足:且.(1)求数列的前三项;(2)是否存在一个实数,使数列为等差数列?若存在,求出的值;若不存在,说明理由;(3)求数列的前项和.