(本小题满分13分)已知圆C:过点A(3,1),且过点(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F.(1)求切线PF的方程; (2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程。(3)若Q为抛物线E上的一个动点,求的取值范围.
设f(n)=1+,当n≥2,nN*时,用数学归纳法证明:n+f(1)+f(2)+…+f(n-1)=nf(n)。
已知函数f(x)=ax3-bx2 +(2-b)x+1,在x=x2处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2。 (1)证明:a>0; (2)若z=a+2b,求z的取值范围。
二次函数f(x)=ax2+x+1(a>0)的图象与x轴的两个不同的交点的横坐标分别为x1、x2。 (1)证明:(1+x1)(1+x2)=1; (2)证明:x1<-1,x2<-1; (3)若函数y=xf(x)在区间(-,-4)上单调递增,试求a的取值范围。
已知0<a<1,0<b<1,0<c<1。求证:(1-a)b,(1-b)c,(1-c)a中至少有一个不大于。
若a、b、c均为正数,求证:。