如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D。(1)求椭圆和双曲线的标准方程(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1(3)是否存在常数,使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,请说明理由。
已知函数. (1)若在区间上恒成立,求的取值范围; (2)若对于任意的,存在,使得,求的取值范围.
已知数列满足,. (1) 求数列的通项公式; (2) 设,数列的前项和记为,求证:对任意的,.
在中,a、b、c分别是角A、B、C的对边,且, (Ⅰ)求角的大小; (Ⅱ)若,求的取值范围.
己知集合,,, 若“”是“”的充分不必要条件,求的取值范围
已知函数. (1)若,试确定函数的单调区间; (2)若,且对于任意,恒成立,试确定实数的取值范围; (3)设函数,求证:.