(本小题满分13分)已知函数(Ⅰ)求函数在(1, )的切线方程(Ⅱ)求函数的极值(Ⅲ)对于曲线上的不同两点,如果存在曲线上的点,且,使得曲线在点处的切线,则称为弦的陪伴切线.已知两点,试求弦的陪伴切线的方程;
已知函数,实数a,b为常数), (1)若a=1,在(0,+∞)上是单调增函数,求b的取值范围; (2)若a≥2,b=1,判断方程在(0,1]上解的个数
已知集合,函数的定义域为, (1)若,求实数的取值范围; (2)若方程在内有解,求实数的取值范围
命题P:函数内单调递减;命题Q:曲线轴交于不同的两点. 如果“P\/Q”为真且“P/\Q”为假,求a的取值范围.
已知条件: 条件: (Ⅰ)若,求实数的值; (Ⅱ)若是的充分条件,求实数的取值范围.
是否存在实数a,使函数的定义域为,值域为?若存在,求出a的值;若不存在,说明理由。