(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.联结BF、CD、AC. (1)求证:四边形ABFC是平行四边形; (2)如果DE2=BE·CE,求证四边形ABFC是矩形.
如图是一个等腰梯形的水渠的横截面,已知渠道底宽米,渠底与渠腰的夹角∠120°,渠腰米,求水渠的上口AD的长.
如图,矩形ABCD中, cm, cm,动点M从点D出发,按折线DCBAD方向以2 cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1 cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,且 cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?
如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,请猜想,CE和CF的大小有什么关系?并证明你的猜想.
商场销售某种产品,一月份销售了若干件,共获利润30 000元.二月份将这种商品的单价降低了0.4元.但销售量比一月份增加了5 000件,从而获得利润比一月份多2 000元. 求调价前每件商品的利润是多少元?
如图,是⊙的直径,是⊙的弦,以为直径的⊙与相交于点,,求的长.