(12分)右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC//PD,且PD=AD=2CE=2 .(1)若N为线段PB的中点,求证:EN⊥平面PDB;(2)求该几何体的体积;
在关于人体脂肪含量(百分比)和年龄关系的研究中,得到如下一组数据
(Ⅰ)画出散点图,判断与是否具有相关关系; (Ⅱ)通过计算可知, 请写出对的回归直线方程,并计算出岁和岁的残差.
设函数,是定义域为R上的奇函数. (1)求的值,并证明当时,函数是R上的增函数; (2)已知,函数,,求的值域; (3)若,试问是否存在正整数,使得对恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.
如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形ABCD的边长为. (1)求证:平面ABCD丄平面ADE; (2)求四面体BADE的体积; (3)试判断直线OB是否与平面CDE垂直,并请说明理由.
已知. (1)求函数的定义域; (2)判断并证明函数的奇偶性; (3)若,试比较与的大小.
如图,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点. (1)求证:CN⊥AB1; (2)求证:CN//平面AB1M.