(本小题满分12分)如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,……,依次类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是.记小球遇到第行第个障碍物(从左至右)上顶点的概率为.(Ⅰ)求,的值,并猜想的表达式(不必证明);(Ⅱ)已知,设小球遇到第6行第个障碍物(从左至右)上顶点时,得到的分数为,试求的分布列及数学期望.
已知矩形中,,,,分别在,上,且,,沿将四边形折成四边形,使点在平面上的射影在直线上.(1)求证:平面;(2)求二面角的大小.
如图,边长为2的正方形绕边所在直线旋转一定的角度(小于)到的位置.(1)若,求三棱锥的外接球的表面积;(2)若为线段上异于,的点,,设直线与平面所成角为,当时,求的取值范围.
如图,四棱锥中,底面是平行四边形,平面,垂足为,在线段上,,,,是的中点,四面体的体积为.(1)求异面直线与所成角的余弦值;(2)棱上是否存在一点,使,若存在,求的值,若不存在,请说明理由.
如图,四棱锥中,底面为平行四边形,,,底面.(1)证明:平面平面; (2)若二面角为,求与平面所成的正弦值.
如图,在七面体中,四边形是边长为2的正方形,平面,平面,且,,与交于点,点在上,且(1)求证:平面;(2)求七面体的体积.