设各项为正的数列,其前项和为,并且对所有正整数,与2的等差中项等于与2的等比中项.(1)写出数列的前二项; (2)求数列的通项公式(写出推证过程);(3)令,求的前项和.
如图,在直三棱柱中,,,,点是的中点.(1)求异面直线与所成角的余弦值;(2)求平面与平面所成二面角的正弦值.
某县为增强市民的环境保护意识,面向全县征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率.(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
的三个内角对应的三条边长分别是,且满足(1)求的值;(2)若, ,求和的值.
已知函数在(1,+∞)上是增函数,且a>0.(1)求a的取值范围;(2)求函数在[0,+∞)上的最大值;(3)设a>1,b>0,求证:.
已知函数满足f(1)=0,且在x=2时函数取得极值.(1)求a,b的值;(2)求函数f(x)的单调区间;(3)求函数f(x)在区间[0,t](t>0)上的最大值g(t)的表达式.