(本小题满分13分)设数列{an}满足a1=t,a2=t2,前n项和为Sn,且Sn+2-(t+1)Sn+1+tSn=0(n∈N*).(1)证明数列{an}为等比数列,并求{an}的通项公式;(2)当<t<2时,比较2n+2-n与tn+t-n的大小;(3)若<t<2,bn=,求证:++…+<2n-.
已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.(Ⅰ)求点M的轨迹方程;(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆()相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.求△OQR的面积的最大值(其中点O为坐标原点).
已知函数,.(Ⅰ)若与在处相切,试求的表达式;(Ⅱ)若在上是减函数,求实数的取值范围;(Ⅲ)证明不等式: .
四棱锥,底面为平行四边形,侧面底面.已知,,,为线段的中点.(Ⅰ)求证:平面;(Ⅱ)证明:.
某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从三个社团成员中抽取18人,结果拳击社被抽出了6人.(Ⅰ)求拳击社女生有多少人;(Ⅱ)从围棋社指定的3名男生和2名女生中随机选出2人参加围棋比赛,求这两名同学是一名男生和一名女生的概率.
已知函数,记函数的最小正周期为,向量,(),且.(Ⅰ)求在区间上的最值;(Ⅱ)求的值.