如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为y=-x+,点A、D的坐标分别为(-4,0),(0,4).动点P自A点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外).(1)求出点B、C的坐标;(2)求s随t变化的函数关系式;(3)当t为何值时s有最大值?并求出最大值.
(每小题6分)解方程: (1)+=1 (2)3-=
先化简,再求值:(-)·,其中x=-3.
(本题共10分)如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒. (1)若点P、Q同时向右运动2秒,则点P表示的数为_______,点P、Q之间的距离是______个单位; (2)经过__________秒后,点P、Q重合; (3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.
(本题共8分)某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):
(1)这天仓库的原料比原来增加了还是减少了?请说明理由; (2)根据实际情况,现有两种方案: 方案一:运进每吨原料费用5元,运出每吨原料费用8元; 方案二:不管运进还是运出费用都是每吨原料6元; 从节约运费的角度考虑,选用哪一种方案比较合适. (3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.
(本题共6分)已知当x=-1时,代数式2mx3-3mx+6的值为7. (1)若关于的方程2my+n=11-ny-m的解为y=2,求n的值; (2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m-n]的值.