(本题8分)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金160 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)
某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:1.第三组的频数是12.请你回答:(1)本次活动共有 件作品参赛;(2)若将各组所占百分比绘制成扇形统计图,那么第四组对应的扇形的圆心角是 度。(3)本次活动共评出2个一等奖和3个二等奖及三等奖、优秀奖若干名,对一、二等奖作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出两张卡片,抽到的作品恰好一个是一等奖,一个是二等奖的概率是多少?
如图,点A、B、C分别是⊙O上的点,CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠ABC=60°.求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE•AB的值.
如图(1),在直角坐标系xOy中,抛物线与x轴交于A、B两点,交y轴于点C,过A点的直线与抛物线的另一交点为D(m,3),与y轴相交于点E,点A的坐标为(-1,0),∠BAD=45°,点P是抛物线上的一点,且点P在第一象限.(1)求直线AD和抛物线的解析式;(2)若S△PBC:S△BOC=2:3,求点P的坐标;(3)如图(2),若M为抛物线的顶点,点Q为y轴上一点,求使QM+QB最小时,点Q的坐标,并求QM+QB的最小值.
如图,在等腰直角三角形ABC和DEC中,∠BCA=∠DCE=90°,点E在边AB上,ED与AC交于点F,连接AD.(1)求证:△BCE≌△ACD.(2)求证:AB⊥AD.
某公司生产的某种商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)满足一次函数且关系如下表:
未来40天内,每天的销售价格y(元)与时间t(天)的函数关系式如下:
(1)求日销售量m(件)与时间t(天)的函数关系;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少;(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.