(本小题满分12分)设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2.(I)求a,b的值;(II)证明:≤2x-2.
已知函数f(x)=sin2x+sinxcosx-(xÎR). (1)若,求f(x)的最大值; (2)在△ABC中,若A<B,f(A)=f(B)=,求 的值.
如图,F是抛物线的焦点,Q是准线与x轴的交点,直线经过点Q。(Ⅰ)直线与抛物线有唯一公共点,求方程;(Ⅱ)直线与抛物线交于A、B两点;(i)设FA、FB的斜率分别为,求的值;(ii)若点R在线段AB上,且满足,求点R的轨迹方程。
设 (1)若在[1,上递增,求的取值范围;(2)求在[1,4]上的最小值
车站每天8∶00-9∶00,9∶00-10∶00都恰有一辆客车到站,8∶00-9∶00到站的客车A可能在8∶10,8∶30,8∶50到站,其概率依次为;9∶00-10∶00到站的客车B可能在9∶10,9∶30,9∶50到站,其概率依次为.(1)旅客甲8∶00到站,设他的候车时间为,求的分布列和;(2)旅客乙8∶20到站,设他的候车时间为,求的分布列和.
如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中,.(Ⅰ)求的长;(Ⅱ)求点到平面的距离.