设a,b∈R,且a>b,比较a3与b3的大小
请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm. (1)某广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)某厂商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
已知函数f(x)=ax3+bx2-3x(a、b∈R)在点x=-1处取得极大值为2.(1)求函数f(x)的解析式;(2)若对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.
设函数f(x)=(x2+ax+b)ex(x∈R).(1)若a=2,b=-2,求函数f(x)的极大值;(2)若x=1是函数f(x)的一个极值点.①试用a表示b;②设a>0,函数g(x)=(a2+14)ex+4.若ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.
若函数f(x)=-+blnx在(1,+∞)上是减函数,求实数b的取值范围.
已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;