(本小题满分14分)如图,已知椭圆的离心率为,短轴的一个端点到右焦点的距离为.设直线与椭圆相交于两点,点关于轴对称点为.(1)求椭圆的方程;(2)若以线段为直径的圆过坐标原点,求直线的方程;(3)试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
(1) 求内接于半径为R的球并且体积最大的圆柱的高. (2) 求内接于半径为R的球并且体积最大的圆锥的高.
如图,将边长为a的正方形铁皮的四角各截去一个同样大小的小正方形后,将四边向上翻折做成一个无盖的正四棱柱形容器,求此容器的体积最大值.
(本小题满分15分)已知函数. (1)若函数的值域为,求a的值; (2)若函数在上是增函数,求实数的取值范围.
(本小题满分15分)定义在上的奇函数,满足,又当时,是减函数,求的取值范围。
(本小题满分15分)将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每个涨价1元,其销售量就减少10个,为了取得最大利润,每个售价应定为多少元?