(本小题满分14分)如图,已知椭圆的离心率为,短轴的一个端点到右焦点的距离为.设直线与椭圆相交于两点,点关于轴对称点为.(1)求椭圆的方程;(2)若以线段为直径的圆过坐标原点,求直线的方程;(3)试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
一个容量为M的样本数据,其频率分布表如下.(Ⅰ)完成频率分布表 ;(Ⅱ)画出频率分布直方图 ;(Ⅲ)利用频率分布直方图,估计总体的众数、中位数及平均数. 【解】 频率分布表 频率分布直方图
已知函数(1)当=时,求曲线在点(,)处的切线方程。(2) 若函数在(1,)上是减函数,求实数的取值范围;(3)是否存在实数若不存在,说明理由。若存在,求出的值,并加以证明。
已知椭圆的中心是坐标原点,焦点在轴上,离心率为,又椭圆上任一点到两焦点的距离和为.过右焦点与轴不垂直的直线交椭圆于,两点。(1)求椭圆的方程;(2)在线段上是否存在点,使得?若存在,求出的取值范围;若不存在,请说明理由.
如图示,边长为4的正方形与正三角形所在平面互相垂直,M、Q分别是PC,AD的中点。(1)求证: (2)求多面体的体积(3)试问:在线段AB上是否存在一点N,使面若存在,指出N的位置,若不存在,请说明理由。
在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+ S2=12,.(1)求与的通项公式;(2)设数列{}满足,求{}的前n项和.