(本小题满分14分)如图,已知椭圆的离心率为,短轴的一个端点到右焦点的距离为.设直线与椭圆相交于两点,点关于轴对称点为.(1)求椭圆的方程;(2)若以线段为直径的圆过坐标原点,求直线的方程;(3)试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
(本小题满分12分)已知函数,若的图象上相邻两条对称轴之间的距离为,且当时,函数的最大值为1. (1)求函数的表达式; (2)在△ABC中,若,且,求的值.
如图,抛物线的焦点为F,椭圆的离心率,C1与C2在第一象限的交点为 (1)求抛物线C1及椭圆C2的方程; (2)已知直线与椭圆C2交于不同两点A、B,点M满足,直线FM的斜率为k1,试证明
(本小题满分12分)某化妆品生产企业为了占有更多的市场份额,拟在2010年世博会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销费t万元之间满足成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2010年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要再投入32万元的生产费用,若将每件化妆品的售价定为:其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完。 (1)将2010年利润y(万元)表示为促销费t(万元)的函数; (2)该企业2010年的促销费投入多少万元时,企业的年利润最大? (注:利润=销售收入—生产成本—促销费,生产成本=固定费用+生产费用)
(本小题满分12分) 各项均不为零的数列 (1)求数列的通项公式; (2)数列
(本小题满分12分) 某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可以继续参加科目B的考试。每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书,现在某同学将要参加这项考试,已知他每次考科目A成绩合格的概率均为,每次考科目B成绩合格的概率均为。假设他在这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为X。 (1)求X的分布列和均值; (2)求该同学在这项考试中获得合格证书的概率。