如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.(1)当t≠1时,求证:△PEQ≌△NFM;(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
解答下列各题:(1)先化简,再求值:,其中;(2)如果代数式5a+3b的值为-4,那么代数式-2(a+b)-4(2a+b)的值是多少?请写出你的解题过程.
公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.如果用a表示脚印长度,b表示身高.这两者之间的关系类似于b=7a—3.(1)某人脚印长度为24cm,则他的身高约为多少?(2)在某次案件中,抓获了两名可疑人员,一个身高为1.87m,另一个身高为1.65m,现场测量的脚印长度为27cm,请你帮助侦破一下,哪个可疑人员的作案可能性更大?
在数轴上把下列各数表示出来,并用“<”连接各数.-,,,-(-),+,22.
把下列各数分别填入相应的集合里. -1.8,0,,0.1,-,-1.4343343334…(每两个4之间1的个数逐次加1),. 正数集合:( …); 负数集合:( …); 有理数集合:( …); 无理数集合:( …).
如图,长方形ABCO的顶点A、C、O都在坐标轴上,点B的坐标为(8,3),M为AB的中点.(1)试求点M的坐标和△AOM的周长;(2)若P是OC上的一个动点,它以每秒1个单位长度的速度从点C出发沿射线CO方向匀速运动,设运动时间为t秒(t>0).①若△POM的面积等于△AOM的面积的一半,试求t的值;②是否存在某一时刻t,使△POM是等腰三角形?若存在,求出此时t的值;若不存在,试说明理由.