已知梯形ABCD中,AD∥BC,∠A=90°,点E为AB上一点,且CE⊥DE,CB、DE的延长线交于点F.(1)求证:; (2)已知EF=5,FB=3,求BC的长.
如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:DE=EF;(2)当∠A=50°时,求∠DEF的度数;
已知5a-1的平方根是,6a+2b-1的立方根是3,求b-4a的平方根.
求满足下列等式中的x的值: (1) (2)
用四块长为acm、宽为bcm的矩形材料(如图1)拼成一个大矩形(如图2)或大正方形(如图3),中间分别空出一个小矩形A和一个小正方形B.(1)求(如图1)矩形材料的面积;(用含a,b的代数式表示)(2)通过计算说明A、B的面积哪一个比较大;(3)根据(如图4),利用面积的不同表示方法写出一个代数恒等式.
如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.