设展开式中,第二项与第四项的系数之比为,试求展开式中含的项。
已知f(x)=logax(a>0且a≠1),设f(a1),f(a2),…,f(an) (n∈N*)是首项为4,公差为2的等差数列. (1)设a为常数,求证:{an}成等比数列; (2)若bn=anf(an),{bn}的前n项和是Sn,当a=时,求Sn.
数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*). (1)求数列{an}的通项an; (2)求数列{nan}的前n项和Tn.
设数列{an}的前n项和Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1. (1)求数列{an}和{bn}的通项公式; (2)设cn=,求数列{cn}的前n项和Tn.
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960. (1)求an与bn; (2)求.
Sn是数列{an}的前n项和,an=,求Sn.