在中,、、分别是三内角A、B、C的对应的三边,已知(1)求角C的大小;(2)满足的是否存在?若存在,求角A的大小.
如图,在四棱锥中,顶点在底面内的射影恰好落在的中点上,又,且(1)求证:;(2)若,求直线与所成角的余弦值;(3)若平面与平面所成的角为,求的值。
哈尔滨市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为。
(1)请完成上面的列联表;(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。参考公式与临界值表:。
在中,角所对的边分别为,若。(1)求证;(2)若的平分线交于,且,求的值。
已知函数.(1)若p=2,求曲线处的切线方程;(2)若函数在其定义域内是增函数,求正实数p的取值范围;(3)设函数,若在[1,e]上至少存在一点,使得成立,求实数p的取值范围.
已知函数.(1)若,函数是R上的奇函数,当时,(i)求实数与的值;(ii)当时,求的解析式;(2)若方程的两根中,一根属于区间,另一根属于区间,求实数的取值范围.