若数列 A 1 = a 1 , a 2 . . . a n n ≥ 2 满足 a k + 1 - a k = 1 k = 1 , 2 , . . . , n - 1 ,数列 A n 为 E 数列,记 S A n = a 1 + a 2 + . . . + a n . (Ⅰ)写出一个满足 a 1 = a 5 = 0 ,且 S A 5 > 0 的 E 数列 A n ; (Ⅱ)若 a 1 = 12 , n = 2000 ,证明: E 数列 A n 是递增数列的充要条件是 a n = 2011 ; (Ⅲ)对任意给定的整数 n n ≥ 2 ,是否存在首项为 0 的 E 数列 A n ,使得 S A n = 0 ?如果存在,写出一个满足条件的 E 数列 A n ;如果不存在,说明理由.
(本小题满分10分)【选修4-5:不等式选讲】 已知函数. (Ⅰ)求的解集; (Ⅱ)设函数,,若对任意的都成立,求实数k的取值范围.
(本小题满分10分)【选修4-4:坐标系与参数方程】 已知曲线C的极坐标方程为,以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,直线的参数方程为(t为参数). (Ⅰ)把曲线C的极坐标方程化为直角坐标方程,把直线的参数方程化为普通方程; (Ⅱ)求直线被曲线C截得的线段AB的长.
(本小题满分10分)【选修4-1:几何证明选讲】 如图,已知直线PA与圆O相切于点A,经过点O的割线PBC交圆O于点B和点C,的平分线分别交AB,AC于点D和E. (Ⅰ)证明:; (Ⅱ)若,求的值.
(本小题满分12分)已知函数,其中e是自然对数的底数. (Ⅰ)证明:是R上的奇函数; (Ⅱ)若关于x的不等式在上恒成立,求实数m的取值范围; (Ⅲ)已知正数a满足:存在,使得成立,试比较与的大小,并证明你的结论.
(本小题满分12分)已知椭圆C:的右焦点为,短轴的一个端点B到F的距离等于焦距. (Ⅰ)求椭圆C的方程; (Ⅱ)过点F的直线与椭圆C交于不同的两点M、N,是否存在直线,使得与的面积之比为1?若存在,求出直线的方程;若不存在,说明理由.