已知各项均为正数的数列{}的前n项和满足,且(1)求{}的通项公式;(2)设数列{}满足,并记为{}的前n项和,求证:
已知以a1为首项的数列{an}满足:an+1=⑴当a1=1,c=1,d=3时,求数列{an}的通项公式⑵当0<a1<1,c=1,d=3时,试用a1表示数列{an}的前100项的和S100⑶求证:当0<a1<(m是正整数),c=,d=3m时, a2-,a3m+2-,a6m+2-,a9m+2-成等比数列。
已知函数(I)求f(x)在[0,1]上的极值;(II)若对任意成立,求实数a的取值范围;(III)若关于x的方程在[0,1]上恰有两个不同的实根,求实数b的取值范围.
已知函数且任意的、都有(1)若数列(2)求的值.
已知向量(1)用k表示;(2)用最小时,求向量与向量的夹角.
实系数方程的一个根在(0,1)内,另一个根在(1,2)内,求: (1)、的值域; (2)、的值域; (3)、的值域.